
SRP-6: Improvements and Re�nements to the Seure Remote

Password Protool

Thomas Wu

Arot Systems

tom�arot.om

Otober 29, 2002

Abstrat

This doument addresses two spei� seurity and operational issues with the Seure Remote Pass-

word Protool, the �rst being the \two-for-one" ative password guessing attak by an attaker posing

as a server, and the seond being the message ordering property whih requires that the server wait for

the lient's �rst exponential residue before sending its own. The e�et that these improvements have on

real-world implementations of SRP is also explored.

1 Introdution

The Seure Remote Password protool, �rst published in 1998 [3℄, is an authentiated key-exhange protool

designed to resist both passive and ative network adversaries even when used with relatively short, human-

memorizable passwords. The original protool, sometimes referred to as \SRP-3" for historial reasons and

spei�ed in [4℄, operates in a group de�ned by a large safe prime N and a primitive root g. Reviewing briey,

the server omputes its veri�er value v for a user identity I as follows:

x = H(s; I; P )

v = g

x

All values are omputed modulo N . The value s is a random salt, whih is stored along with v. The

authentiation protool itself proeeds as desribed in Table 1.

Client Server

1.

I

�! (lookup s, v)

2. x = H(s; I; P )

s

 �

3. A = g

a

A

�!

4.

B;u

 � B = v + g

b

5. S = (B � g

x

)

a+ux

S = (Av

u

)

b

6. M

1

= H(A;B; S)

M

1

�! (verify M

1

)

7. (verify M

2

)

M

2

 � M

2

= H(A;M

1

; S)

8. K = H(S) K = H(S)

Table 1: The Seure Remote Password Protool (SRP-3)

1



H is a seure hash funtion, and the values a, b, and u are generated randomly. At the end of a suessful

protool run, both sides will share a seret session key K.

As a strong password protool, SRP attempts to prevent passive adversaries from obtaining any useful

information about the password by observing suessful protool runs, and it seeks to limit ative adversaries

to a single on-line password guess for every impersonation attempt. It is easy to show that, for eah session

that he interferes with, an ative adversary an always get one password guess by noting that both sides

of the protool have only the password as a shared seret, and that an ative attak an simply guess at a

password and "pretend" to be one of the authentiating parties, using that password guess as the shared

seret. Ideally, a strong password protool seeks to limit an attaker to that theoretial minimum if suh an

ative attak is attempted.

SRP in its urrent form allows an ative attaker to make and verify two password guesses per imperson-

ation attempt[2℄. This property does not pose a signi�ant pratial seurity threat to existing implemen-

tations, sine eah guessing attempt results in a failure detetable to both sides and would still require an

unrealisti number of on-line attempts, even with the number required ut in half. Nevertheless, this falls

short of the theoretial limit, and a simple hange to the protool that eliminates this \two-for-one" attak

will be presented.

SRP, as originally proposed, also imposes a limitation on the ordering of its protool messages. In Steps

3 and 4 of Table 1, the server must wait for the lient's value of A before revealing its value of u. In some

ases, this restrition prevents ertain forms of optimization when SRP is integrated into existing seurity

and authentiation protools. It is sometimes bene�ial to have the exibility to send both key exhange

messages asynhronously to save time on high-lateny links, or to send all of the server's key exhange

messages �rst to redue the number of network round trips. A relatively minor modi�ation to SRP will be

presented whih eliminates this \message-ordering" limitation.

2 Two-for-one guessing

As noted previously, an ative attaker an validate two password guesses per impersonation attempt. Note

that the server is supposed to send the lient the value v + g

b

, whih is just g

x

+ g

b

. An attaker who does

not know either x or v an make a single guess at v while attempting to impersonate the server by using

that guessed value of v in the server's alulation. However, beause of the symmetry of the equation for

the server's value, it is also possible for the attaker to insert an additional password guess by sending the

lient the value g

x

+ g

y

, where x and y are guessed passwords; the seond password guess y simply takes the

plae of the random exponent b. If the atual password is x, the lient will subtrat out g

x

and use g

y

as

the base in its session key alulation. In this ase, the attaker an use y as its b value in its own session

key alulation, sine it is the disrete log of g

y

, the lient's base. The same holds if x and y are swapped.

In fat, this attak applies to any variant of the protool in whih an attaking server an send the lient

a key exhange value that results in the lient using a base value whose disrete log is known to the server

if the lient's password is either of two values hosen by the server.

One simple way to remove the symmetry in the server's key exhange value is to multiply v by some

value k agreed to by both sides:

B = kv + g

b

Inidentally, this variant an also be implemented by multiplying the g

b

value by k with no di�erene in

seurity; however doing it this way requires the lient to implement modular division or modular inversion

to ompute his session key, whereas the variant as urrently proposed does not.

It is easy to see that this variant does not protet against the server guessing two passwords at one if

the attaker knows the disrete log of k in the SRP group. If k = g

j

, where the adversary knows j, he an

send the lient:

B = kg

x

+ kg

y

If the atual password is x, the lient will subtrat out kg

x

from this value, leaving it with kg

y

as its base.

2



But kg

y

= g

j

g

y

= g

j+y

, so the attaker knows the disrete log of the lient's base and an determine if x is

the orret password. The same holds if x and y are swapped.

The value of k an hange from one run of the protool to the next, it an be assoiated with the SRP

group parameters N and g, or it an be a onstant. Although the last option is the simplest, are must be

taken to ensure that k is never a known exponential of g, in light of the previous analysis.

Note that as a safe prime, N an be expressed as 2q+1, where q is an odd prime. Also note that N must

be 2 (mod 3) beause a value of N that was 1 (mod 3) would make q divisible by 3. The Legendre symbol

(

3

N

) an thus be omputed:

�

3

N

�

=

�

N

3

�

(�1)

(N�1)(3�1)=4

=

�

N

3

�

(�1)

q

= �

�

N

3

�

= �

�

2

3

�

= �(�1)

(3

2

�1)=8

= 1

This means that the value k = 3 is always a quadrati residue modulo N , whih in turn means that g

ould never be hosen to be equal to k. Sine 3 is also not an integral power of any other integer, it is also

nearly impossible for g to be a known root of k by aident. Using k = 3 ensures that any set of parameters

N and g that are safe to use with SRP are also safe to use with k, from the standpoint of eliminating the

\two-for-one" attak.

3 Message ordering

The impliations of the \message-ordering" property of SRP an be better understood by studying the

various proposals to optimize SRP and integrate it into existing protools. Table 2 shows a version of

SRP suggested in [3℄ that required only three messages, with an optional fourth message for the server to

authentiate itself to the lient. In this version of the protool, the parameter u is no longer an expliit

protool message, but is instead alulated as a funtion of the server's B value.

C =) S I;A

C (= S s;B

C =) S M

1

C (= S M

2

(optional)

Table 2: Original optimized SRP

This version of the protool requires that both sides agree on the group parameters N and g in advane,

beause the lient needs to know them in order to alulate A in the �rst message. In pratie, however, this is

diÆult to arrange. Sine the password veri�er value (i.e. v = g

x

) for a partiular user on a partiular server

is tied to a partiular set of parameters, the lient annot unilaterally selet the parameters the way it might

in, say, an unauthentiated DiÆe-Hellman key exhange. Even if SRP group parameters were standardized

by bit length, the lient would still need to know the user's group size before starting the negotiation,

whih would pose problems for both usability and implementation. Foring all users of a partiular protool

to use a single standard group with a �xed bit length would resolve this issue, but the loss of exibility

resulting from mandating a single �xed group would be a serious problem if the protool were intended to

be general-purpose in nature.

In pratie, it is more natural for the server to send the lient the values of the group parameters for that

user after reeiving the username in the �rst protool ow from the lient. This way, the lient does not

need to antiipate or otherwise keep trak of whih parameters are used for whih users or servers; it only

needs to verify their validity, whih an be done mathematially or by simple table lookup. Table 3 shows

the resulting sequene of message ows, as doumented in [4℄.

Unfortunately, adding the transmission of the group parameters has lengthened the protool by a full

round-trip. An astute observer might wonder why the server ouldn't send his value B as part of his �rst

reply to the lient and then have the lient reply with both A and M

1

folded into one message ow? The

3



C =) S I

C (= S N; g; s

C =) S A

C (= S B

C =) S M

1

C (= S M

2

(optional)

Table 3: SRP with parameters

problem with this rearrangement is the seurity requirement that the server's value u must never be sent

before reeiving the lient's value A. In protools that use the message B to derive the shared value u, the

same restrition applies to B, sine revealing B reveals u to the lient. As desribed in Setion 3.2.4 of [3℄,

revealing u to the lient before he sends his value A allows him to arry out an attak. More spei�ally, an

attaker who knows the server's veri�er value v (but not x) an pose as a lient and send the value A = g

a

v

�u

instead of A = g

a

, and this will \anel out" the v

u

term in the server's session key alulation, allowing the

attaker to impersonate the user whose veri�er he has stolen without performing even a ditionary attak.

Even if u is alulated and sent separately from B, it would still be neessary to send u itself after A, and

the lient would not be able to send M

1

along with A beause he ould not ompute it without knowing u.

The key to resolving this apparent impasse is the realization that it is not absolutely neessary to have

the server withhold knowledge of u from the lient until he has reeived A. The real onstraint is that the

lient be unable to manipulate A with knowledge of u so that it has the speial form desribed earlier. It is

also useful to observe that the attak desribed previously against a server that reveals u too soon was made

simple by the fat that the value of u did not depend on A, so the lient ould freely manipulate A one he

knew the \�nal" value of u.

If, however, the value of u is taken as the output of a one-way hash funtion whose input inludes the

lient's message A, for example:

u = H(A;B)

this attak beomes onsiderably harder to mount, even if the server's value B is sent �rst. The attaker

must �nd a value u for whih

u = H(g

a

v

�u

; B)

Even though the attaker an hoose the values of a and u arbitrarily, a hash funtion H with preimage

resistane makes it diÆult for him to pik a value of u and work bakwards to �nd a suitable value of a.

The output length of H must be long enough to resist an exhaustive searh attak based on varying the

value of a. Using the full output of a seure hash funtion like SHA-1 to ompute u will make suh an attak

infeasible.

This optimization shortens the protool by a full round-trip, even with group parameters sent by the

server. Table 4 shows a sequene of protool ows that takes advantage of the removal of the \message-

ordering" property and sends the server's key exhange message along with the parameters, saving a round

trip and restoring the protool to the minimal number of rounds in the original \optimized" SRP.

C =) S I

C (= S N; g; s; B

C =) S A;M

1

C (= S M

2

(optional)

Table 4: SRP with optimized message ordering

4



4 Conlusion

Table 5 shows the SRP protool inorporating the two re�nements introdued in this paper.

Client Server

1.

I

�! (lookup s, v)

2. x = H(s; I; P )

s

 �

3.

A = g

a

u = H(A;B)

A

�!

B

 �

B = 3v + g

b

u = H(A;B)

4. S = (B � 3g

x

)

a+ux

S = (Av

u

)

b

5. M

1

= H(A;B; S)

M

1

�! (verify M

1

)

6. (verify M

2

)

M

2

 � M

2

= H(A;M

1

; S)

7. K = H(S) K = H(S)

Table 5: SRP with re�nements (SRP-6)

The end result of these relatively small re�nements is a strong password protool that holds ative

adversaries to the desired limit of one password guess per impersonation attak, as well as a protool that

o�ers more exibility for implementors by allowing the ordering of the lient and server key exhange messages

to vary. This is partiularly useful for protools that send the user's group parametersN and g in the server's

�rst message and wish to save a round trip by inluding B in this message. One example of suh a protool is

SSL/TLS [1℄, whih has a fairly �xed set of message ows; integration with SRP is onsiderably easier when

the server an send all of its key exhange messages in its ServerKeyExhangemessage, whih is de�ned by

the protool to preede the ClientKeyExhange message from the lient.

The improved protool will be alled \SRP-6" to distinguish it from previous variants of SRP, both

oÆial and unoÆial.

Referenes

[1℄ T. Dierks and C. Allen. The TLS protool version 1.0. Certiom, January 1999. Request For Comments

(RFC) 2246.

[2℄ P. MaKenzie. On the seurity of the SPEKE password-authentiated key exhange protool. Tehnial

Report 2001/057, Luent Tehnologies, 2001.

[3℄ T. Wu. The seure remote password protool. In Proeedings of the Internet Soiety Network and

Distributed System Seurity Symposium, pages 97{111, Marh 1998.

[4℄ T. Wu. The SRP Authentiation and Key Exhange System. Stanford University, September 2000.

Request For Comments (RFC) 2945.

5


